Progra	m	BS Physical	Course	PF-35/	Credit	02		
	111	Education	Code	1 L-33 4	Hours	02		
Course T	litle	Sports Biomec	hanics (Theo	ry)		I		
Course Introduction								
This course offers a comprehensive study of biomechanics in the context of sports and physical								
education. It covers the principles of mechanics as they apply to human movement, focusing on								
analyzing and improving athletic performance and reducing injury risk. Students will learn through								
theoretical co	ncepts ar	nd practical appl	ications, inclu	uding motion	n analysis,	force measurement, and		
biomechanical software.								
Learning Outcomes								
On the completion of the course, the students will:								
on the compr		ne course, the ste						
• Under	stand the	fundamental prin	nciples of bio	mechanics a	nd their ap	plication to sports.		
Analy:	ze human	n movement using	g biomechani	cal principle	s.			
Apply	biomech	anical concepts t	o enhance ath	letic perform	nance and	prevent injuries.		
Utilize	e biomech	nanical tools and	technologies	for moveme	nt analysis	S		
Critica	ally evalu	ate biomechanic	al research an	d its implica	tions for s	ports practice.		
		Course Co	ontent			Assignments/ Readings		
	Introduction to Biomechanics							
Week 1	Det	finition and scop	a of biomach	nice		From Books and Class		
	• Der	tory and develor	ment of bion	unes rechanics in	snorts	Lectures		
	• Ov	erview of the cou	irse		sports			
	Basic P	rinciples of Bio	mechanics					
Week 2		_				From Books and Class		
WCCK 2	• Kir	nematics and kine	etics			Lectures		
	• Typ	pes of motion: lin	near, angular,	and general				
	For	ces and their effe	ects on movel	nent				
	Anaton	ny and Function	ial Biomecna	inics		Erom Dools and Class		
Week 3	• Mu	sculoskeletal sys	stem and its c	omponents		Lectures		
	• Fur	nctional anatomy	related to mo	vement		Lectures		
	• Mu	scle mechanics a	and joint func	tion				
	Linear Kinematics							
Week 1	_	_				From Books and Class		
	• Dis	placement, veloc	city, and acce	leration		Lectures		
	• Pro	jectile motion in	sports					
	• Cas	se studies and exa	amples					

	Angular Kinematics	
XX 1 5		From Books and Class
week 5	• Angular displacement, velocity, and acceleration	Lectures
	Rotational motion in sports	
	Case studies and examples	
	Linear Kinetics	
		From Books and Class
Week 6	 Newton's laws of motion 	
	• Application of forces: gravity, friction, and air	Lectures
	resistance	
	Impulse and momentum	
	Angular Kinetics	
Week 7		From Books and Class
Week /	• Torque and moment of inertia	Lectures
	• Angular momentum and its conservation	
	Application to sports movements	
	Practical Session: Motion Analysis Techniques	
Week 8	• Introduction to motion conturn systems	From Books and Class
	Introduction to motion capture systems	Lectures
	Analyzing sports movements using video analysis Dratical analisations	
	Practical applications Diamonhaming of the Lemma Extremity	
	Biomechanics of the Lower Extremity	Enorm De alva an d Class
Week 9	• Hip knee and ankle biomechanics	From Books and Class
	 The strategies Common injuries and prevention strategies 	Lectures
	 Common injuries and prevention strategies Case studies and applications 	
	Riomechanics of the Unner Extremity	
	Difficulties of the opper Extremity	From Books and Class
Week 10	• Shoulder, elbow, and wrist biomechanics	Lectures
	• Common injuries and prevention strategies	Dectares
	• Case studies and applications	
	Biomechanics of the Spine	
*** 1 1 1	•	From Books and Class
Week 11	• Structure and function of the spine	Lectures
	 Spinal loading and injury mechanisms 	
	Case studies and applications	
	Equipment and Technology in Biomechanics	
		From Books and Class
Week 12	• Force plates, electromyography (EMG), and pressure	Lectures
	sensors	Lectures
	• Use of software for biomechanical analysis	
	Emerging technologies in biomechanics	
Week 13	Enhancing Athletic Performance	From Books and Class
	Biomachanical analysis of technicus and skill	Lectures
1	Biomechanical analysis of technique and skin	

	• Optimizing performance through biomechanical principles					
	Case studies and practical examples					
	Injury Prevention and Rehabilitation					
Week 14	 Mechanisms of sports injuries Biomechanical strategies for injury prevention Rehabilitation techniques and their biomechanical basis 	From Books and Class Lectures				
	Practical Session: Biomechanical Research and Data					
Week 15	 Analysis Designing and conducting biomechanical research Data collection and analysis Presenting biomechanical research findings 	From Books and Class Lectures				
	Review and Final Exam Preparation					
Week 16	 Review of key concepts and principles Mock exams and practice questions Final exam preparation 	From Books and Class Lectures				
Textbooks and Reading Material						

Textbooks

- Hall, S. J. (2019). Basic biomechanics (8th ed.). McGraw-Hill Education.
- Hamill, J., Knutzen, K. M., & Derrick, T. (2020). Biomechanical basis of human movement (5th ed.). Wolters Kluwer Health.
- Luttgens, K., & Hamilton, N. (2021). Kinesiology: Scientific basis of human motion (12th ed.). McGraw-Hill Education.
- McGinnis, P. (2017). Biomechanics of sport and exercise (4th ed.). Human Kinetics.
- Robertson, G. E., Caldwell, G. E., Hamill, J., Kamen, G., & Whittlesey, S. N. (2018). Research methods in biomechanics (2nd ed.). Human Kinetics.

• Watkins, J. (2018). An introduction to biomechanics of sport and exercise (2nd ed.). Routledge. **Suggested Readings**

- Journals: Journal of Biomechanics, Sports Biomechanics, Clinical Biomechanics
- Websites: International Society of Biomechanics, American Society of Biomechanics
- Videos: Online tutorials and lectures on biomechanics and movement analysis